首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2460篇
  免费   291篇
  国内免费   153篇
化学   1871篇
晶体学   25篇
力学   107篇
综合类   1篇
数学   236篇
物理学   664篇
  2024年   5篇
  2023年   95篇
  2022年   113篇
  2021年   126篇
  2020年   162篇
  2019年   172篇
  2018年   160篇
  2017年   109篇
  2016年   171篇
  2015年   161篇
  2014年   184篇
  2013年   233篇
  2012年   263篇
  2011年   248篇
  2010年   162篇
  2009年   122篇
  2008年   131篇
  2007年   108篇
  2006年   60篇
  2005年   34篇
  2004年   18篇
  2003年   10篇
  2002年   16篇
  2001年   5篇
  2000年   10篇
  1999年   2篇
  1998年   6篇
  1996年   1篇
  1995年   4篇
  1993年   3篇
  1991年   1篇
  1990年   6篇
  1986年   1篇
  1985年   2篇
排序方式: 共有2904条查询结果,搜索用时 31 毫秒
41.
The dynamic characteristics of drilling shaft in deep hole drilling influenced by minimal quantity lubrication (MQL) is investigated. According to the features of the compressible fluid Reynolds equation in oil/air feature, a time-dependent mathematical model is established to describe the pressure distribution of cutting fluid with nonlinearity in MQL deep hole drilling. By introducing the differential transformation approach, the time-dependent pressure equation arising from cutting fluid is solved by the use of direct integral method. The influences of the rotational speed, the transverse displacement ratio, and radial clearance on the hydrodynamic pressure distribution of cutting fluid are obtained. The advantage of this method is to overcome much of the computational cost and has its rapid convergence rate. Furthermore, the nonlinear responses of drilling shaft influenced by MQL are analyzed, and the instability rotational speeds of drilling tool are discussed while the design parameters of drilling shaft system changing.  相似文献   
42.
Ni@CeO2 core–shell catalysts were synthesized via a facile surfactant-assisted hydrothermal method and their catalytic performance in the dry reforming of methane (DRM) reaction was evaluated. A variety of techniques including XRD, N2 adsorption–desorption, SEM, TEM, TPO, TGA were employed to characterize the prepared or spent catalysts. The encapsulation by the CeO2 shell, on one side, can restrict the sintering and growth of Ni nanoparticles under harsh reaction conditions. On the other side, compared to the conventional shell material of SiO2, CeO2 can provide more lattice oxygens and vacancies, which is helpful to suppress coke deposition. Consequently, the Ni@CeO2 core–shell catalysts exhibited better catalytic activity and stability in the DRM reaction with respect to the referenced Ni@SiO2 core–shell catalysts and Ni/CeO2 supported catalysts.  相似文献   
43.
44.
Although the reaction chemistry of transition metallacyclopropenes has been well-established in the last decades, the reactivity of rare-earth metallacyclopropenes remains elusive. Herein, we report the reaction of lutetacyclopropene 1 toward a series of unsaturated molecules. The reaction of 1 with one equiv. of PhCOMe, Ar1CHO (Ar1=2,6-Me2C6H3), W(CO)6, and PhCH=NPh provided oxalutetacyclopentenes, metallacyclic lutetoxycarbene, and azalutetacyclopentene via 1,2-insertion of C=O, C≡O, or C=N bonds into Lu−Csp2 bond, respectively. However, the reaction between 1 and Ar2N=C=NAr2 (Ar2=4-MeC6H4) gave an acyclic lutetium complex with a diamidinate ligand by the coupling of one molecule of 1 with two carbodiimides, irrespective of the amount of carbodiimide employed. More interestingly, when 1 was treated with two equiv. of Ar1CHO, the reductive coupling of two C=O bonds was discovered to give a lutetium pinacolate complex along with the release of tolan. Remarkably, the reactivity of 1 is significantly different from that of scandacyclopropenes; these metallacycles derived from 1 all represent the first cases in rare-earth organometallic chemistry.  相似文献   
45.
46.
An efficient and cost-effective strategy to modificate the surface of active carbon (AC), form a 3D-conductive network, and therefore improve the electrochemical performance of AC based supercapacitor was developed.  相似文献   
47.
48.
High pressure can effectively control the phase transition of MoTe2 in experiment, but the mechanism is still unclear. In this work, we show by first-principles calculations that the phase transition is suppressed and 1T phase becomes more stable under high pressure, which originates from the pressure-induced change of the interlayer band occupancies near the Fermi energy. Specifically, the interlayer states of 1T phase tend to be fully occupied under high pressure, while they keep partially occupied for the Td phase. The increase of the band occupancies makes the 1T phase more favorable in energy and prevents the structure changing from 1T to Td phase. Moreover, we also analyze the superconductivity under high pressure based on BCS theory by calculating the density of states and phonon spectra. Our results may shed some light on understanding the relationship between the interlayer band occupancy and crystal stability of MoTe2 under high pressures.  相似文献   
49.
Six optically active α-hydroxyl-β,γ-unsaturated acid esters 1a to 1f were synthesised, and they are significant moieties of the cerebrosides. The chiral intermediate alkynol 4 prepared by catalytic asymmetric addition had 99% ee, and which was converted into the target compounds 1a to 1f with high enantiomeric purity.  相似文献   
50.
Under the influence of thiocyanate anions (SCN?) and cetyltrimethyl ammonium bromide (CTAB), NiS flower-like architectures were successfully synthesized by a one-step hydrothermal method. The synthesized flower-like architectures, with a multilayered and highly ordered texture, have diameters of several micrometers. X-ray powder diffraction (XRD) shows that the NiS flower-like architectures are rhombohedral crystalline. On the basis of condition-dependent experiments, the diffusion-limited aggregation (DLA) model and cage effect were used to explain the growth process of rhombohedral crystalline NiS flower-like architectures. Magnetic measurements showed that the coercivity (Hc) of the as-obtained NiS flower-like architectures was 102.14 Oe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号